

Use of ILUC in EU regulation: fundamental challenges in science remain unresolved

Malaysian Palm Oil Council 06 January 2014

Authors:

Partner, Helge Sigurd Næss-Schmidt Senior Economist, Martin Bo Hansen

Table of contents

Ex	ecutive summary	2
1	Robustness of ILUC science	4
1.1	The issue of land use change	4
1.2	Large variation between ILUC results	5
2	Risk of discrimination and incoherence of ILUC policy	9
2.1	Subjective determination of ILUC factors	9
2.2	Inadequate recognition of non-EU land conservation efforts	13
2.3	Incoherent reporting requirements on ILUC	14
Re	ferences	16

Executive summary

Pressures on land use and food prices have increased at the global level as world growth has taken off since the mid-1990s. Emerging economies have recorded surging rates of productivity growth while the world's population has also continued to expand. Thus, a fast growing global population needs more food, while a more wealthy population demands more meat products, which are more land intensive. Furthermore, the very growth in global demand for scarce raw materials has increased the cost of producing food: indeed World Bank studies suggest that over half of the increase in food prices from the period 1997–2004 to 2005–12 is associated with higher oil prices which have boosted costs of production.¹ So global economic and population growth increase costs of production as raw materials and available production land cannot be expanded at the rate of demand.

In Europe, the increased pressure on land has also been associated with the EU's biofuel policy. As a result, the EU has proposed that estimated effects of land use changes relating to the EU's demand for biofuels should be taken into account when measuring the net CO_2 displacement effects of biofuels. The basic idea is that land used for biofuel production cannot simultaneously be used for producing food. Consequently, at the margin, growing demand for biofuel in EU could imply that more arable land will be developed somewhere else in the EU or rest of the globe to make up for the fall in production of food. This land development will release captured CO_2 . For this purpose the concept of Indirect Land Use Change (ILUC) has been proposed, to capture this effect: what is the net displacement of CO_2 if you add the CO_2 emissions associated with land conversion?

As ILUC is a concept that cannot be observed, the only way to estimate the effect is by applying complex economic modelling. Despite the increasing amount of research into this area to improve the basis for such estimates, our judgement in this paper is that the concept of ILUC, and certainly the currently proposed estimates, is and will remain unsuited as a regulatory tool for biofuels. We outline our arguments below.

The current status of ILUC estimates, in the context of EU regulation

Despite substantial efforts to measure emissions linked to ILUC, there is still a very wide range of estimates. Four studies commissioned by the European Commission rank the same type of biofuels very differently in terms of their ILUC factors. Bearing in mind the substantial challenges inherent in making such estimates, this should not come as a surprise: this study outlines a number of assumptions that modellers have to make, and considers how appropriate such an action is to address global food security and long term economic and environmental sustainability. Essentially, the choices being considered by EU policymakers require arbitrary decisions about a massive number of parameters and

World Bank Development Prospects Group & Poverty Reduction and Economic Management Network Trade Department (2013)

modelling assumptions that are both likely to change over time and for which EU regulation is ill-suited to address.

Our reading is that models that attempt to capture ILUC effects are not suited for regulatory use. Especially when it comes to forming the basis for implicit CO₂ content measurement on specific products, which would be the case if ILUC factors were to be counted towards the sustainability criteria of biofuels.

The European Commission's proposed revision to RED

The unsuitability of proposed ILUC measurements for regulatory use has partly been recognised by the European Commission, which has refrained from proposing that ILUC factors be used to assess the sustainability of biofuels. However, the approach taken by the European Commission will nonetheless create two types of problems. *Firstly*, it has proposed that biofuel producers report the ILUC emissions associated with the production of biofuels, despite the significant shortcomings of the methodology underlying such reporting. *Secondly*, the Commission has based its proposal on a selective reading of the studies it reviewed. The proposal relies in particular on one study (IFPRI) that makes a set of assumptions that rank alternative biofuels very differently than the other key studies (to the disadvantage of palm oil based biofuels).

The assumptions made in the IFPRI study and the resulting conclusions drawn about ILUC emissions are worth highlighting as an example of the inherent problems in estimating ILUC factors. IFPRI (1) assumes that all expansion of oil-based biofuels leads to land expansion primarily in Indonesia and Malaysia; (2) assumes that more land use in Indonesia and Malaysia takes place on peat land which is highly carbon rich (high level of CO_2 emissions when cleared/drained).; and (3) ignores developments to increase reliance on biomass feedstocks that would reduce pressure to expand production. The result is that any expansion of biofuel based on oil-crops in any country on the planet leads to land use changes in Indonesia and Malaysia in the form of peat land draining and consequently the release of a substantial amount of CO_2 .

Our study questions these modelling steps for a number of reasons, and draws attention to the significant uncertainties also highlighted by the IFPRI authors themselves.

Conclusion

The conclusion of this note is that we advise against using ILUC as basis for regulation of specific products, such as biofuels. The European Union's attempt to regulate biofuels by imposing ILUC calculations is not supported by solid scientific evidence or careful use of the range of available methodologies.

Moreover, determining the size of potential ILUC emissions cannot be modelled or calculated with the degree of certainty and accuracy required to make it suitable for regulatory action. As a consequence, using such uncertain ILUC factors as a basis for regulation could weaken the credibility of EU biofuels policy.

Chapter 1

Robustness of ILUC science

1.1 The issue of land use change

The increasing pressure on land as a resource is driven by several elements, including the following three. *Firstly*, the global population is growing rapidly, which implies a need for more food production, but also room for dwelling and other economic activity. *Secondly*, the global population is experiencing increasing wealth, which in general fosters a shift in consumption towards meat products, which take up more land per energy unit than vegetable products. *Thirdly*, food crops have alternative uses other than food consumption e.g. for producing biofuels and other consumer goods. Evidence suggests that the first two elements are responsible for the majority of the current expansion of agriculture production and will continue to be so for the foreseeable future.² In addition, food price increases over the past two decades seem primarily to be driven by increases in the price of crude oil i.e. not expansion of biofuel production.³

Following the expansion of biofuel mandates, there is a strong focus on their effects on demand for land. In this respect, a distinction is typically made between direct land use change (DLUC) and indirect land use change (ILUC).

Direct land use change

When demand for biofuels increases, farmers have an incentive to meet this demand by producing more feedstock, as is also the case when demand for food production increases. An increase in production through cropland expansion will be at the expense of the natural vegetation in the specific location. Expanding cropland for biofuel feedstock production is known as the "direct land-use change effect".

Indirect land use change

When feedstock used for biofuels is produced on existing cropland there is no direct landuse change effect. But when agricultural production is displaced, the price of the displaced products is likely to increase. A price increase then creates an incentive to expand cropland for agricultural production. The expansion of cropland for production of displaced agriculture products has been described as the indirect land-use change effect.

This simple explanation suggests that the distinction is arbitrary as the final result is the same. While the difference between DLUC and ILUC may be arbitrary, the distinction holds important implications for regulators who want to affect land use change. Direct land use change is observable and can be monitored and enforced.⁴ ILUC, on the other

² See e.g. Wollenberg et al (2011)

World Bank Development Prospects Group (2013). Arguably oil prices would have been higher in the absence of the increase in biofuels which have weakened demand for oil for road transportation purposes.

In the EU it is regulated such that biofuels grown on previously carbon rich land is not accepted as counting towards the mandate in the renewable energy directive

hand, cannot be observed and instead can only be estimated based on complex economic models.

From a first principle, the regulation of use of land in any particular part of the globe should be based on the role of that particular plot of land for local, regional and national objectives. This calls for more standard locally oriented cost-benefit analysis in that perspective including, where relevant, local environmental objectives. If the economic value of using the particular plot is high enough, economics suggest that this should take place irrespective of whether it is for urban development, industrial plants or agricultural use, including production of biomass for biofuels. The use of regulatory ILUC factors in EU biofuel policies is not a targeted way to compensate for perceived lack of such cost-benefit policies in regions across the globe.

1.2 Large variation between ILUC results

ILUC is not observable, and attempts to quantify it must rely on complicated economic models. It will be a central tenet of this note that such models inherently include assumptions about the key relationships that, fundamentally, are somewhat arbitrary, making them poorly suited as an instrument for regulation.

There is no consensus on ILUC modelling, as it is a relatively new scientific field. Due to the large interest in the subject, several researchers with different approaches have attempted to predict the ILUC effect of increasing biofuel production. In 2010, the Commission reviewed 22 different such modelling approaches.⁵

It is safe to say that the results of predicted ILUC emission factors were inconclusive and showed a striking variation in results. For example; the predicted ILUC factor across models for wheat-based bioethanol varies from -79 to 329 g CO₂ eq. /MJ, and for rape-seed the predictions vary from -33 to 800 g CO₂ eq. /MJ, cf. Table 1.

Even within models the variance is substantial. One study predicts that ILUC of palm oil is between -55 and 213,6 another that ILUC of maize is between 38 and 358,7 and yet another that the ILUC of wheat is between 25 and 238.8

DG Energy (2010), The impact of land use change on greenhouse gas emissions from biofuels and bio liquids, literature review, page 9

European Parliament (2011), a study by Öko-institute

⁷ DG Energy (2010)

JRC (2010)

Table 1 No consensus on ILUC predictions

Feedstock	Minimum values	ILUC emission factor Maximum values (g CO2 eq./MJ biofuel)
Sugar cane	-1-48	19-195
Palm oil	-55-45	34-214
Sugar beet	13-33	65-181
Wheat	-79-79	-8-329
Maize	5-104	44-358
Soybean	0-92	63-293
Rapeseed	-33-80	52-800
Fossil fuel comparator	83,8	

Source: Copenhagen Economics (2011), based on Ros et al (2010), IFPRI (2011), JRC (2010), E4tech (2010), Searchinger et al (2008), European Parliament (2011)

When digging deeper into the modelling exercises conducted, it is of no surprise that the predictions vary so considerably. The required modelling exercise is extremely complex, and a number of highly uncertain relationships and global interactions need to be stipulated. To illustrate some of the complexity inherent in such models, consider the following steps, which present just a small fraction of a complete modelling exercise used to provide ILUC estimates:

Step 1: Establish which types of biofuels are likely to meet the increased demand in EU. This among others includes determining the degree of substitutability between the different fuels. This is a technical question and to a large extent depends on whether engines can run equally well on, say, rapeseed diesel and palm based diesel.⁹

Step 2: Establish the likely increase in production of the biofuel crop, and where on the planet this will take place. This depends crucially on the flexibility of production of the different fuel types. In economic terms: how do the different supply curves look like? The more difficult/expensive it is to expand production of, say, rapeseed biofuel (the supply curve is steep) the more of the new demand will be met by other fuel types where the supply curve is less steep. This exercise is complex. The supply curves depend on characteristics of the production facilities (is it easy to scale up existing plants and/or build new plants) and agricultural conditions (is it easy to grow more soy bean, or is it limited by lack of available land, access to water, access to the right climatic conditions etc.). In most models these supply curves are estimated from historic data, however, this is not likely to be accurate in the future as these relationships are highly dynamic over time, and long-run supply curves tend to more elastic than short-run supply-curves. In other models, the

Technically, many models neglect this step and simply assume that 100 pct. of the new demand will be met by one type of fuel, in order to construct crop-specific ILUC factors.

modellers simply stipulate where they think land use change will take place based on historic patterns. Needless to say that this may not necessarily reflect current or near-term developments including local forest preservation policies.

Step 3: Establish what the carbon content of the newly converted land is. This is very difficult as land characteristics and vegetation can be very different between countries within a region; between different areas within a country; and even within the same carbon sink in an area. Moreover, there is significant disagreement about the average carbon content of different forest types such as tropical, boreal, or temperate forests.¹⁰

Step 4: Establish the response in the market for food products. If say palm oil is being used to satisfy the demand for biofuels, the price of palm oil will increase, and it is likely to lose market share in the market for food products (vegetable oils). What the response will look like depends on the substitutability between the products on the market for vegetable oils. This substitutability does not depend on the absolute prices of the different products, but on the relative prices. Even though one crop is consistently cheaper than other crops (e.g. palm oil cheaper than rapeseed) it does not necessarily mean that this crop will take up the majority of the expansion.

Step 5: Go back to step 2. What will the supply response be to the changed pricing signals from the food market, and where on the planet will this response take place?

Step 6: Go back to step 3.

For each of the steps 1 to 5 there are range of equally plausible guestimates of effects, suggesting that the overall result has limited meaning from a scientific perspective cf. Table 2. The examples illustrate how much the ILUC predictions can change by variations in very few key assumptions. For example: if modellers assume that the productivity of new agriculture land is 25 per cent instead of 75 per cent, the predicted ILUC emissions can increase by 77 per cent (which value for productivity of marginal land is correct, is widely contested by researcher and must inevitably depend crucially on the exact plot of land actually converted into agriculture land). To restate: changes in one uncertain parameter value are capable of increasing ILUC predictions by 77 per cent! For a thorough description of challenges with respect to ILUC modelling, consult Copenhagen Economics (2011).

Source for variation	Examples of impact
Productivity of marginal land	If marginal land productivity is 25 pct. instead of 75 pct. of existing land productivity, GHG emission predictions would increase by app 77 pct.
Including co-products and their substitution rate	If co-products are taken into account, it may reduce the estimated land requirements by 23-94 pct.
Are expected yield increases determined exogenously or endogenously	An increase in yield productivity by 0.1 per cent per annum can reduce estimated GHG emissions by 72 per cent.
Location of land expansion and land type cultivated	Determining in the model where new crop land ex- pansion takes place is to a very large degree deter- mined by the modeller's assumptions typically based on historic experiences
Substitutability between different crops in the food market	If substitutability between crops is high, the increase in crop demand is more likely to be spread out on different crops and vice versa if substitutability is low. The actual effect on land use change will depend on the steepness of the supply curve, which is very difficult to predict
Response of food consumption to increases in price of food	If food consumption is very elastic, food price increases will be limited and there will be no crop land expansion. Getting the food consumption elasticity right (or wrong) will have a large impact on estimated ILUC emissions.
Estimated carbon stock of different land varies significantly	Some models use estimated carbon stock values seven times larger than other models. This implies a seven times larger ILUC. Moreover, the carbon stock may be very different even within the same forest areas

Source: Copenhagen Economics (2011), based on DG Energy (2010), JRC (2010), Prins et al. (2010), Ros et al. (2010), CARB (2009a), CARB (2009b), Dumortier et al. (2009), McDaniel & Balistreri (2002), Keith et al. (2009).

Based on our review of the uncertainties related to ILUC modelling, we advise against the use of ILUC factors to define regulatory instruments. ILUC models are often a combination of very complex modelling structures, large amounts of parameters, which need to be specified, and a range of assumptions, which basically can circumvent the entire model structure. Advanced economic models are typically used to illustrate the impact of applying a certain regulatory instrument; not to determine concrete levels of excise duties, which essentially is what the EC is attempting to do, by applying ILUC factors in sustainability criteria.

Chapter 2

Risk of discrimination and incoherence of ILUC policy

In October 2012, the Commission proposed a directive amending the renewable energy directive and the fuel quality directive. ¹¹ In the revised directive, concrete values for fuel-specific ILUC emissions are proposed. The fuels are divided into three sub-groups with corresponding emission factors between 12 and 55 g CO₂ eq. /MJ, cf. Table 3.

Table 3 Proposed ILUC factors

Feedstock group	Estimated ILUC emissions (g CO2eq/MJ)
Cereals and other starch rich crops (wheat, maize)	12
Sugars (sugar cane, sugar beet)	13
Oil crops (sunflower, rapeseed, palm fruit, soy bean)	55

Source: Annex VIII in European Commission (2012)

While not counting towards specific fuels' sustainability requirement, the Commission proposes that ILUC factors should be included in national reporting of GHG emissions.

We argue that this approach is inadequate on three counts:

- 1. Subjective determination of ILUC factors
- 2. Inadequate recognition of national land conservation efforts
- 3. Incoherent reporting requirement

2.1 Subjective determination of ILUC factors

As there is no consensus on ILUC predictions, we argue that any choice of ILUC emission factors will to a large extent be based on subjective decisions, even when objectivity is endeavoured. We give a few examples:

Prior to the Commission's proposal, it organised a thorough literature review, which reviewed at least 22 different land use change-modelling exercises, where four studies were commissioned by the Commission itself. The results of these studies varied significantly, as described in Chapter 1. In its proposal, the Commission chose to rely on only one study. This choice has basically bypassed the enormous uncertainties depicted in Chapter 1, and endorsed three estimates down to almost decimal precision, cf. Table 3 above.

European Commission (2012), COM(2012) 595 final

¹² IFPRI (2011)

The European Commission's selective approach to the use of this study significantly affects the ranking of oil crop-based biofuels. ¹³ Indeed oil-based crops (which are used to produce biodiesel) are given an ILUC-factor 4-5 times higher than cereal and sugar based crops (which are used to produce bioethanol). This result is derived in the study, which the Commission relies on (IFPRI), but is not an obvious conclusion from other ILUC studies. While the oil crop soybean comes out with the highest ILUC factor in the IFPRI study, it is considered as one of the lowest ILUC-feedstocks in three other models. Similarly for palm fruit, where three other models find it to be ranked first, second and third respectively, cf. Table 4. The Commission offers no explanation for this choice of results.

Table 4 Ranking of crops is highly diverse in key studies								
Feedstock	Туре	IFPRI	AGLINK- COSIMO	ESIM	CAPRI	ADEME	Öko institut	CARD
Wheat	Cereal	4	5	3	3	-	4	1
Maize	Cereal	2	4	4	2	-	-	-
Sugar cane	Sugar	3	1	2	-	5	2	-
Sugar beet	Sugar	1	-	-	1	3	-	-
Rapeseed	Oil crop	6	3	6	5	4	5	2
Soybean	Oil crop	8	-	1	-	2	1	-
Palm fruit	Oil crop	6	2	-	-	1	3	-
Sunflower	Oil crop	5	-	5	4	-	-	-

Note: In ESIM and CAPRI, the final result is the total land use change and not emission factors stemming

from the land use change.

Source: The models referred to in the table

Such a diverse set of results reinforces the analysis that ILUC modelling is not a reliable basis for important policy decisions.

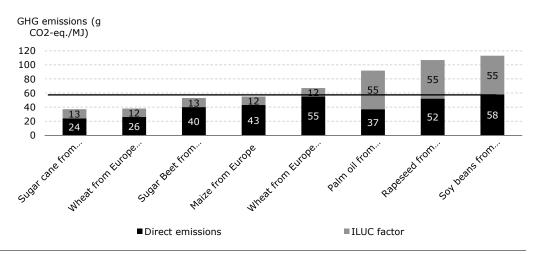
The IFPRI result that oil-based crops have relatively higher ILUC is very much driven by one specific assumption which is not typically embodied in other models: no matter which oil crop is being used to produce biofuel, it is assumed that palm oil expansion will take place on peat land. The rationale is that palm oil production is the most competitive vegetable oil, ¹⁴ and that palm oil will fill a large share of the gap on the market for vegetable oils. This peat land removal does not take place (in the model) when producing bioethanol, and consequently this assumption alone drives to a large extent, the high ILUC for oil crops compared to cereal and sugar. This assumption does not seem to be applied in other ILUC modelling studies and depends crucially on an assumption that expansion will only occur in South East Asia despite existing limitations on expansion and conservation initiatives. As we have underlined in our analysis of the different steps leading up to

The IFPRI study is arguably a thorough modelling assessment, but nonetheless subject to the same uncertainties inherent to ILUC modelling. Discussions are taking place critically assessing the IFPRI study, arguing both against and for several assumptions made in the exercise. See e.g. (S&T)² Consultants (2011)

¹⁴ IFPRI (2011), page 66

table 2 above, there is no credible way that the expansion of demand for a particular kind of biofuel can be linked to a change of land use in a particular region of the world. There are far too many more or less arbitrary assumptions that have to be taken to make this link. In addition, the model results do not seem to take into account one of the complex links between the different global markets: if the demand for bioethanol increase, this will increase the market price for ethanol crops such as cereals. This gives incentives for farmers growing oil based crops such as rapeseed to change their crops into cereal crops. This then increases the price for oil crops, which – according to the model – should lead to peat land draining in South East Asia. As it is easy for farmers to change the crops on their land, this suggests that crop specific ILUC factors for cereals, sugars and oil crops should be more aligned.

One concern related to the large difference in ILUC predictions between oil based crops and sugar based crops is related to the assumed substitutability between oil crops and sugar crops in the market for land. In fact, many farmers can choose whether to grow an oil crop like rapeseed or a sugar crop like wheat or maize. Hence, when the demand increases for sugar based bioethanol, farmers will have the incentive to stop growing rapeseed and replace it with e.g. maize or sugar beet. This will then in turn lead to the same pressures in the market for vegetable oil which IFPRI assumes is linked to emissions from cropland expansion in Indonesia. Consequently, if it is possible for farmers to choose between an oil crop and a sugar crop without constraints (the degree of substitutability is high), then the difference between oil based crops and sugar based crops should be very small.


The subjective choice of summary metric can also significantly affect the ILUC prediction obtained, if ILUC estimates were to be based on more than one study.

The chosen ILUC factor will have massive impact on industry

The introduction of ILUC factors is likely to have a massive impact on the biofuel industry if ILUC factors are included in sustainability requirements. Most first generation biofuels will be deemed unsustainable as a result of the application of these factors — not on the basis of their actual emissions.

The case of e.g. sugar beet and maize from Europe is particularly illustrative. Including the supposed ILUC emissions, which are estimated to be 53 and 55 g CO₂eq/MJ respectively, biofuels from these feedstock lie respectively 1 g CO₂eq below and 1 g CO₂eq above the sustainability threshold stipulated in the Renewable Energy Directive, cf. Figure 1. Whether or not these fuels are counted as sustainable is thus decided by a precision of their supposed ILUC estimate of 1 g CO₂eq/MJ. Such precision is impossible to justify within the range of uncertainty embedded in ILUC modelling. Note also that palm oil (with methane capture) comes out very well when looking at observable direct emissions, but supersedes several sugar/starch based crops when adding the high ILUC factor for oil crops suggested by the Commission.

Figure 1 Choice of ILUC factors crucial for "sustainability"

Note: The ILUC factors used are taken from the Commission proposal based on IFPRI (2011). The horizontal line indicates the 35 per cent GHG saving minimum equivalent to 54 g CO2eq/MJ

The direct emission estimate for palm oil from SE Asia is with methane capture facilities

Source: Copenhagen Economics based on European Commission (2009) and Annex VIII in European Commission (2012)

The Commission has already acknowledged that estimation of ILUC factors are very likely going to change over time. This is due to the sheer level of uncertainty involved in the modelling:

- Models, assumptions and parameter value are likely to change over time as a response to different trade patterns, changes in technologies, land use policies in different parts of the globe and the way such policies are integrated (or not) in ILUC estimates
- When actual production or consumption behaviour changes, the models need to be re-specified
- Several studies illustrate that ILUC factors are likely to be non-linear with respect
 to the amount of biofuel production envisaged. This implies that the ILUC factors
 will not remain constant as the amount of biofuel production changes as well as
 change the ranking of alternative sources of input and biofuel variants
- The Commission may choose to apply truly crop-specific ILUC factors instead of the crop-aggregation currently proposed

This strongly highlights that the nature of the modelling exercise will lead to different figures produced, and thus a continuous need to change the legislation based on these figures. This demonstrates a basic incoherence and inconsistency of the policy.

Continuous updating of ILUC factors would also create considerable uncertainty for producers (both producers of the feedstock and producers of the biofuel), as their particular biofuel may opt in and out of 'sustainability requirements' over time depending on the changes made to the models and variables used. This is likely to deter investments both in the current fuels but more importantly also in more advanced and sustainable fuels or

production processes. In addition, implementing such ILUC factors as a part of the sustainability requirements will have strong negative welfare implications as huge investments into current biofuel production facilities will be valueless for the fuels that are no longer deemed sustainable. Investments, which to a large extent were driven by EU regulatory incentives through the Renewable Energy Directive and the Fuel Quality Directive.

2.2 Inadequate recognition of non-EU land conservation efforts

Non-EU stakeholders have argued that the EU does not sufficiently recognise local development needs and domestic conservation efforts. As previously discussed, we believe the proper regulatory approach to land use change in third countries should be based on local considerations and economic cost-benefit analysis of environmental and economic effects.

In the study which the Commission relies on, as in most other ILUC modelling exercises, it is assumed that certain feedstock are grown in certain regions of the world. This is a plausible point of departure, as e.g. most sugar cane is currently produced in Latin America, most palm oil is currently produced in South East Asia, and most wheat and maize is currently produced in North America, Europe, and Russia. When the models include these historic facts, the result is that whenever an expansion of e.g. soy or sugar cane production occurs, land use change takes place in Latin America, and similarly for palm oil expansion in South East Asia. This fails to take into account developments in local conservation efforts.

Consider e.g. South East Asia. This region currently produces by far the largest share of global palm oil.¹⁵ However, historic levels of agricultural development are a poor measure for future land conversion for at least two reasons:

- 1. There is an increasing focus on land conservation measures in South East Asia, where in particularly Malaysia have taken steps to ensure that conversion of land for development purposes occurs in a sustainable manner, including joining the UN-REDD program, cf. Box 1.
- 2. Evidence suggest that expansion of palm oil plantations is now taking place in Africa and South America on low-carbon soil, cf. Box 2. This implies that historic patterns cannot be used to determine future outcomes.

Box 1 Examples of Malaysian land conservation policy

Land conservation efforts in Malaysia are some of the most advanced in the developing world. In 1992 (Rio), the Malaysian government pledged to maintain forest at a minimum of 50 per cent of the Malaysian land mass, thus capping the expansion into forests. This pledge was reiterated in 2009 (Copenhagen). Palm plantations are in this respect not classified as forests. Currently approximately 55 per cent of land is covered by forest. Malaysia joined the UN-REDD programme in 2012.

Strategies in place to achieve this include sustainable forest management practices, establishing forest plantations on marginal/unproductive land to ease logging pressures elsewhere along with enrichment and replanting in logged-over or poor forests. A nation-wide initiative to plant 26 million trees, or one tree per Malaysian, by 2015, was launched by NRE in 2010. In addition, the National Landscape Department is to plant 20 million trees in urban areas from 1997-2020 to green cities.

In addition, nearly half (16 out of 33 million hectares) of Malaysian forests are under management as natural forests. 14 out of 33 million hectares are set aside as permanent forest reserves, and 2 million hectares are national parks and wildlife sanctuaries

Source: Copenhagen Economics based on Malaysian Government (2011) and USAID (2010).

Box 2 Palm development takes place in Africa and South America

In the face of rising global demand for palm oil and available land for cultivation running out or being restricted for conservation and other purposes in South East Asia, palm oil producers are looking to expand in other parts of the world, notably Africa and South America.

Several palm oil producers are also planning to open plantations in Africa, where an estimated 1 million hectares are available for development. Sime Darby have been considering expansion in Cameroon on 300 000 hectares of agricultural land or already degraded forest. In 2012, Olam were granted the right to develop 88 000 hectares in Gabon. Wilmar International has established a 5 000 hectare plantation in Ghana following the acquisition of a 35 000 hectare plantation in Nigeria in 2012.

In South America, expansion of oil palm plantations has mainly been taking place in Colombia and, to a lower extent, in Brazil, Ecuador, and Peru. In Colombia, most of this expansion is taking place on low-productivity pasture lands and grasslands and in some cases replacing illicit production of the coca plant. In Brazil, where the rate of expansion has been the highest in recent years, much of the land available for plantations is degraded pasture and other already deforested areas.

Source: Bloomberg News (3 April 2013), CIFOR (2012), Financial Times (27 February 2011), Greenpeace (2012), United States Department of Agriculture (2011), Yale Environment 360 (2011)

2.3 Incoherent reporting requirements on ILUC

The Commission has proposed that the suggested ILUC factors should be included in national reporting on greenhouse gas emissions, e.g. by instructing economic operators to

report. While the idea of ILUC reporting requirement is presumably motivated by a wish to estimate global GHG emissions from ILUC, we argue that it is essentially incoherent.

Due to the complexity of ILUC, an ILUC reporting requirement faces the trade-off between *simplicity* and *meaningfulness*. If the reported ILUC factors are intended to reflect actual conditions of specific crops and local/regional land conservation efforts, reporting would have to be complex and entail very high compliance costs. In a nutshell, economic operators would be required to report on (the lack of) forest conservation efforts in all other countries, where the induced agricultural expansion is expected to take place. The Commission has chosen (for now) to opt for the manageable but very *simplistic* regime, where the reporting is simply to follow the proposed ILUC factors in the directive. This has the consequence that biofuel producers are punished by assumptions made within the modelling exercises. This could substantially harm companies producing biofuel from feedstock – and producers of these feedstock – where the IFPRI model has assigned a high ILUC factor to their particular biofuel feedstock.

References

- Bloomberg News (2013), "Asian palm-oil planters head to West Africa", 3 April 2013.
- CARB (2009a), "Proposed regulation to implement the low carbon fuel standard, Volume I, Staff report: Initial statement of reasons".
- CARB (2009b), "Proposed regulation to implement the low carbon fuel standard, Volume II, Appendices".
- Chen & Khanna (2012), "The market-mediated effects of low carbon policies".
- CIFOR (2012), "Soybean and oil palm expansion in South America: A review of main trends and implications".
- Copenhagen Economics (2011), "The missing indirect land-use change factors: How to make decisions when science is incomplete?".
- DG Energy (2010), "The impact of land-use change on greenhouse emissions from biofuels and bioliquids – Literature review".
- Dumortier, J. et al (2009), "Sensitivity of Carbon Emission Estimates from Indirect Land-Use Change". Working Paper 09-WP 493, Center for Agricultural and Rural Development, Iowa State University.
- E4Tech (2010), "A causal descriptive approach to modelling the GHG emissions associated with the indirect land-use impacts of biofuels." A study for the UK Department for Transport.
- European Commission (2009), "Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and

- amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC".
- European Commission (2012), "Proposal for a Directive of the European Parliament and of the Council amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources". COM(2012) 595 final.
- European Parliament (2011), "Indirect land-use change and biofuels" A study made by Ökoinstitut.
- Financial Times (2011), "Sime Darby eyes palm oil expansion in Africa", 27 February 2011.
- Greenpeace (2012), "Palm oil's new frontier".
- IFPRI (2011), "Assessing the land use change consequences of European biofuel policies". Final report.
- JRC (2010), "Indirect Land-use Change from increase biofuels demand Comparison of models and results for marginal biofuels production from different feedstocks".
- Keith et al (2009), "Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests".
- Khanna & Crago (2012), "Measuring indirect land use change with biofuels Implications for policy". Annual Review of Resource Economics **4**:161-184.
- Malaysian Government (2011), "Second National Communication to the UNFCCC".
- McDaniel, C.A. & Balistreri, E.J., (2002), "A review of Armington trade substitution elasticities".
- Prins, A.G., E. Stehfest, K. Overmars, J. Ros, (2010), "Are models suitable for determining ILUC factors?" Netherlands Environmental Assessment Agency.
- Ramos et al. (2009),
- Ros, J., K. Overmars, J. Notenboom, (2010), "How to deal with indirect land-use change in the EU Re-

- newable Energy Directive?". Netherlands Environmental Assessment Agency.
- Searchinger, T.D., et al. (2008), "Biofuels and the need for additional carbon". Environmental Research Letters 5.
- Tyner, W.E., et al. (2010), "Land use changes and consequent CO2 emissions due to US corn ethanol production: A comprehensive analysis". Final report.
- United States Department of Agriculture (2011), "Malaysia: Obstacles may reduce future palm oil production growth". Available at: http://www.pecad.fas.usda.gov/highlights/2011/06/Malaysia/. Accessed 3 June 2013.
- United States Department of Agriculture (2013), "Palm Oil: World Supply and Distribution".

 Available at
 http://www.fas.usda.gov/psdonline/psdreport.as-px?hidReportRetrievalName=BVS&hidReportRetrievalID=710&hidReportRetrievalTemplateID=8.

 Accessed on 6 June 2013.
- USAID (2010), "Asia regional REDD program planning assessment".
- Vad, K. (2011) "A causal-descriptive approach to ILUC-modelling".
- Wollenberg et al (2011), Actions needed to halt deforestation and promote climate-smart agriculture. CCAFS Policy Brief no. 4. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)
- World Bank Development Prospects Group & Poverty Reduction and Economic Management Network Trade Department (2013), Long Term Drivers of Food Prices, Policy Research Working Paper 6455
- Yale Environment 360 (2012), "In Brazil, palm oil plantations could help preserve Amazon". Available at:

 http://e360.yale.edu/feature/in brazil palm oillow plantations could help preserve amazon/24

 http://e360.yale.edu/feature/in brazil palm oillow plantations could help preserve amazon/24

 http://e360.yale.edu/feature/in brazil palm oillow plantations could help preserve amazon/24

 http://e360.yale.edu/feature/in brazil palm oillow plantations could help preserve amazon/24

 http://e360.yale.edu/feature/in brazil palm oillow plantations could help preserve amazon/24

 http://e360.yale.edu/feature/in brazil palm oillow preserve amazon/24

 http://e360.yale.edu/feature/in brazil

 Palmations could help preserve amazon/24

 http://e360.yale.edu/feature/in brazil

 Palmations could help preserve amazon/24

 http://e360.yale.edu/feature/in brazil

 Palmations could help preserve amazon/24

 http://e360.yale.edu/feature/in brazil

 Palmations could help preserve amazon/24

 http://e360.yale.edu/feature/in brazil

 Palmations could help preserve amazon/24

 http://e360.yale.edu/feature/in brazil

 http://e360.yale.edu/feature/in brazil

 <a href="http://e360.yale.edu/feature/in brazil

 <a href="http://e360.yale.edu/feature/in brazil

 <a href="http://e360.yale.edu/feature/in brazil

 <a href="http